Python基于回溯法子集树模板化解选排难点示例,python回溯澳门京葡网站

Python基于回溯法子集树模板解决选排问题示例,python回溯

本文实例讲述了Python基于回溯法子集树模板解决选排问题。分享给大家供大家参考,具体如下:

问题

从n个元素中挑选m个元素进行排列,每个元素最多可重复r次。其中m∈[2,n],r∈[Python基于回溯法子集树模板化解选排难点示例,python回溯澳门京葡网站。1,m]。

如:从4个元素中挑选3个元素进行排列,每个元素最多可重复r次。

分析

解x的长度是固定的,为m。

对于解x,先排第0个位置的元素x[0],再排第1个位置的元素x[1]。我们把后者看作是前者的一种状态,即x[1]是x[0]的一种状态!!

一般地,把x[k]看作x[k-1]的状态空间a中的一种状态,我们要做的就是遍历a[k-1]的所有状态。

那么,套用子集树模板即可。

代码

'''
选排问题
从n个元素中挑选m个元素进行排列,每个元素最多可重复r次。其中m∈[2,n],r∈[1,m]。
作者:hhh5460
时间:2017年6月2日 09时05分
声明:此算法版权归hhh5460所有
'''
n = 4
a = ['a','b','c','d']
m = 3  # 从4个中挑3个
r = 2  # 每个元素最多可重复2
x = [0]*m  # 一个解(m元0-1数组)
X = []   # 一组解
# 冲突检测
def conflict(k):
  global n, r, x, X, a
  # 部分解内的元素x[k]不能超过r
  if x[:k+1].count(x[k]) > r:
    return True
  return False # 无冲突
# 用子集树模板实现选排问题
def perm(k): # 到达第k个元素
  global n,m, a, x, X
  if k == m: # 超出最尾的元素
    print(x)
    #X.append(x[:]) # 保存(一个解)
  else:
    for i in a: # 遍历x[k-1]的状态空间a,其它的事情交给剪枝函数!
      x[k] = i
      if not conflict(k): # 剪枝
        perm(k+1)
# 测试
perm(0) # 从x[0]开始排列

效果图

 澳门京葡网站 1

更多关于Python相关内容可查看本站专题:《Python数据结构与算法教程》、《Python
Socket编程技巧总结》、《Python函数使用技巧总结》、《Python字符串操作技巧汇总》、《Python入门与进阶经典教程》及《Python文件与目录操作技巧汇总》

希望本文所述对大家Python程序设计有所帮助。

本文实例讲述了Python基于回溯法子集树模板解决选排问题。分享给大家供大家参考…

Python基于回溯法子集树模板解决全排列问题示例,python回溯

本文实例讲述了Python基于回溯法子集树模板解决全排列问题。分享给大家供大家参考,具体如下:

问题

实现 ‘a’, ‘b’, ‘c’, ‘d’ 四个元素的全排列。

分析

这个问题可以直接套用排列树模板。

不过本文使用子集树模板。分析如下:

一个解x就是n个元素的一种排列,显然,解x的长度是固定的,n。
我们这样考虑:对于解x,先排第0个元素x[0],再排第1个元素x[1],…,当来到第k-1个元素x[k-1]时,就将剩下的未排的所有元素看作元素x[k-1]的状态空间,遍历之。

至此,套用子集树模板即可。

代码

'''用子集树实现全排列'''
n = 4
a = ['a','b','c','d']
x = [0]*n  # 一个解(n元0-1数组)
X = []   # 一组解
# 冲突检测:无
def conflict(k):
  global n, x, X, a
  return False # 无冲突
# 用子集树模板实现全排列
def perm(k): # 到达第k个元素
  global n, a, x, X
  if k >= n: # 超出最尾的元素
    print(x)
    #X.append(x[:]) # 保存(一个解)
  else:
    for i in set(a)-set(x[:k]): # 遍历,剩下的未排的所有元素看作元素x[k-1]的状态空间
      x[k] = i
      if not conflict(k): # 剪枝
        perm(k+1)
# 测试
perm(0) # 从x[0]开始

效果图

澳门京葡网站 2

更多关于Python相关内容可查看本站专题:《Python数据结构与算法教程》、《Python
Socket编程技巧总结》、《Python函数使用技巧总结》、《Python字符串操作技巧汇总》、《Python入门与进阶经典教程》及《Python文件与目录操作技巧汇总》

希望本文所述对大家Python程序设计有所帮助。

本文实例讲述了Python基于回溯法子集树模板解决全排列问题。分享给大家供大家…

Python基于回溯法子集树模板解决m着色问题示例,python回溯

本文实例讲述了Python基于回溯法子集树模板解决m着色问题。分享给大家供大家参考,具体如下:

问题

图的m-着色判定问题

给定无向连通图G和m种不同的颜色。用这些颜色为图G的各顶点着色,每个顶点着一种颜色,是否有一种着色法使G中任意相邻的2个顶点着不同颜色?

图的m-着色优化问题

若一个图最少需要m种颜色才能使图中任意相邻的2个顶点着不同颜色,则称这个数m为该图的色数。求一个图的最小色数m的问题称为m-着色优化问题。

澳门京葡网站 3

分析

解的长度是固定的,n。若x为本问题的一个解,则x[i]表示第i个节点的涂色编号。

可以将m种颜色看作每个节点的状态空间。每到一个节点,遍历所有颜色,剪枝,回溯。

不难看出,可以套用回溯法子集树模板。

代码

'''图的m着色问题'''
# 用邻接表表示图
n = 5 # 节点数
a,b,c,d,e = range(n) # 节点名称
graph = [
  {b,c,d},
  {a,c,d,e},
  {a,b,d},
  {a,b,c,e},
  {b,d}
]
m = 4 # m种颜色
x = [0]*n # 一个解(n元数组,长度固定)注意:解x的下标就是a,b,c,d,e!!!
X = []   # 一组解
# 冲突检测
def conflict(k):
  global n,graph,x
  # 找出第k个节点前面已经涂色的邻接节点
  nodes = [node for node in range(k) if node in graph[k]]
  if x[k] in [x[node] for node in nodes]: # 已经有相邻节点涂了这种颜色
    return True
  return False # 无冲突
# 图的m着色(全部解)
def dfs(k): # 到达(解x的)第k个节点
  global n,m,graph,x,X
  if k == n: # 解的长度超出
    print(x)
    #X.append(x[:])
  else:
    for color in range(m): # 遍历节点k的可涂颜色编号(状态空间),全都一样
      x[k] = color
      if not conflict(k): # 剪枝
        dfs(k+1)
# 测试
dfs(a)  # 从节点a开始

效果图

澳门京葡网站 4

更多关于Python相关内容可查看本站专题:《Python数据结构与算法教程》、《Python
Socket编程技巧总结》、《Python函数使用技巧总结》、《Python字符串操作技巧汇总》、《Python入门与进阶经典教程》及《Python文件与目录操作技巧汇总》

希望本文所述对大家Python程序设计有所帮助。

本文实例讲述了Python基于回溯法子集树模板解决m着色问题。分享给大家供大家参…

发表评论

电子邮件地址不会被公开。 必填项已用*标注